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Abstract
An antilinear operator in complex vector spaces is an important operator in the
study of modern quantum theory, quantum and semiclassical optics, quantum
electronics and quantum chemistry. Consimilarity of complex matrices arises
as a result of studying an antilinear operator referred to different bases in
complex vector spaces, and the theory of consimilarity of complex matrices
plays an important role in the study of quantum theory. This paper, by means
of a real representation of a complex matrix, studies the relation between
consimilarity and similarity of complex matrices, sets up an algebraic bridge
between consimilarity and similarity and turns the theory of consimilarity
into that of ordinary similarity. This paper also gives some applications of
consimilarity of complex matrices.

PACS number: 02.10.Yn
Mathematics Subject Classification: 15A05, 15A21

1. Introduction

In the study of time reversal in quantum mechanics, quantum and semiclassical optics, quantum
electronics and quantum chemistry [1–4], an antilinear operator in complex vector spaces plays
an important role. For example, the motion of a charged particle in a given electric field is the
following Schrödinger equation:

ih̄
∂ψ(r, t)

∂t
=

[
− h̄2

2m
∇2 + qφ(r)

]
ψ(r, t),

as we know that if ψ(r, t) is a solution to this version of the time-dependent Schrödinger
equation, then ψ∗(r,−t)(∗ is a conjugate operator) is also a solution to this version, and we
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take the latter as the time-reversed solution. It is necessary to take the complex conjugate
because without it, the left-hand side of the equation would change sign under t → −t . It is
seen from this example that time reversal in quantum mechanics is represented by an antilinear
operator (conjugate operator).

In general, an antilinear operator T is a mapping from one complex vector space V to
another W , which is additive and conjugate homogeneous, i.e. for all α, β ∈ V and any
complex number a,

T (α + β) = T (α) + T (β), T (aα) = a∗T (α), (1.1)

where a∗ is the conjugate of a. It is clear that the conjugate operator is a special antilinear
operator. An antilinear operator and a linear operator are two kinds of operators in complex
vector spaces.

Two n × n complex matrices A,B are said to be consimilar if S−1AS∗ = B for some
n × n nonsingular complex matrix S. Consimilarity of complex matrices arises as a result of
studying an antilinear operator referred to different bases in complex vector spaces, and the
theory of consimilarity of complex matrices plays an important role in the study of modern
quantum theory. Consimilarity and similarity are two different equivalent relations of complex
matrices.

Let R denote the real number field and C the complex number field. For x ∈ C, x∗ is
the conjugate of x. Fm×n denotes the set of m × n matrices on a field F. For a given matrix
A ∈ Cm×n, AT denotes the transpose of A,A∗ the conjugate of A and AH the conjugate

transpose of A. Write A
s∼ B if A is similar to B,A

cs∼ B if A is consimilar to B and A
ps∼ B

if A is permutation similar to B. Permutation similarity is both similarity and consimilarity
relations.

Horn and Johnson [5, chapter 4.6] and Hong and Horn [6, 7] studied the theory of
consimilarity of complex matrices by means of coneigenvalues and coneigenvectors, derived a
canonical form under consimilarity and gave an algebraic relation between consimilarity and
ordinary similarity of complex matrices.

Lemma 1.1 ([6, 7]). Let A,B ∈ Cn×n. Then complex matrices A and B are consimilar if and
only if AA∗ and BB∗ are similar and A,B satisfy the alternating-product rank condition, i.e.
rank

∏k
(AA∗) = rank

∏k
(BB∗), k = 1, 2, . . . , n.

This paper, by means of a real representation of a complex matrix, studies the relation
between consimilarity and ordinary similarity of complex matrices, derives a new algebraic
relation theorem, sets up an algebraic bridge between consimilarity and similarity and turns the
theory of consimilarity into that of ordinary similarity. This paper also gives some applications
on consimilarity of complex matrices.

First of all, let us recall a lemma about a real matrix.

Lemma 1.2 ([8 chapter 6.7]). Let A ∈ Rn×n be a real matrix. Then,

(1) The imaginary eigenvalues of the real matrix A appear in conjugate pairs and

(2) A is similar to a real block-diagonal matrix, each block of which has one of the two forms
Jrj

(λj , λ
∗
j ) and Jrk

(λk), and there exists a nonsingular real matrix T ∈ Rn×n such that

T −1AT =
∑

j

⊕ Jrj
(λj , λ

∗
j ) ⊕

∑
k

⊕ Jrk
(λk), (1.2)
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where λj = aj + ibj are imaginary eigenvalues and λk are real eigenvalues of the real
matrix A, and

Jrj
(λj , λ

∗
j ) =




Fj I2

Fj

. . .

. . . I2

Fj




rj ×rj

, Fj =
[
aj bj

−bj aj

]
, (1.3)

and Jrk
(λk) are the Jordan blocks of λk , i.e.

Jrk
(λk) =




λk 1

λk

. . .

. . . 1
λk




rk×rk

. (1.4)

2. Real representation

Let A ∈ Cn×n, and A can be uniquely written as A = A1 + A2i, A1, A2 ∈ Rn×n, i2 = −1. The
real representation matrix is defined [9] in the form

Af =
[
A1 A2

A2 −A1

]
∈ R2n×2n, (2.1)

the real representation matrix Af is called the real representation of A.
Let In be the n × n identity matrix,

Pn =
[
In 0
0 −In

]
, Qn =

[
0 −In

In 0

]
.

Then, P 2
n = I2n,Q

2
n = −I2n.

It is easy to verify the following equations (2.2)–(2.4) by the definition of the real
representation of a complex matrix. That is, if A,B ∈ Cn×n, then

(AB)f = Af PnB
f = Pn(A

∗)f Bf = Af (B∗)f Pn, (2.2)

PnA
f Pn = (A∗)f , QnA

f Qn = Af , (2.3)

(AT )f = (Af )T , (AH )f = Pn(A
f )HPn = Pn(A

f )T Pn, (2.4)

and if A ∈ Cn×n, then A is nonsingular if and only if Af is nonsingular.
For A ∈ Cn×n and α ∈ C2n×1, if Af α = λα, then by (2.3) we have

Af α∗ = λ∗α∗, Af (Qnα) = −λ(Qnα), Af (Qnα
∗) = −λ∗(Qnα

∗). (2.5)

In the same manner, for a Jordan block Jr(λ) of an eigenvalue λ, if Af P = PJr(λ), then
by (2.3) we have

Af P ∗ = P ∗Jr(λ
∗), Af (QnP ) = −(QnP )Jr(λ), Af (QnP

∗) = −(QnP
∗)Jr(λ

∗).
(2.6)

From the above statement, we have the following result.
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Proposition 2.1. Let A ∈ Cn×n. Then,

(1) the eigenvalues of the real representation Af appear in positive and negative conjugate
pairs, i.e. if λ is an imaginary eigenvalue of Af , then ±λ,±λ∗ are also imaginary
eigenvalues of Af , and if λ is a real eigenvalue of Af , then −λ is also a real eigenvalue
of Af ;

(2) the Jordan blocks Jr(λ) of the real representation Af appear in positive and negative
conjugate pairs, i.e. if Jr(λ) is a Jordan block of an imaginary eigenvalue of Af , then
±Jr(λ),±Jr(λ

∗) are also Jordan blocks, and if Jr(λ) is a Jordan block of a real eigenvalue
of Af , then −Jr(λ) is also a real Jordan block of Af .

3. An algebraic relation between consimilarity and similarity

This section gives an algebraic relation between consimilarity and similarity of complex
matrices by means of a real representation of a complex matrix.

Let A ∈ Cn×n. Clearly, by direct calculation we get that Jrk
(−λk) is similar to −Jrk

(λk)

and Jrj
(−λj ,−λ∗

j ) is similar to −Jrj
(λj , λ

∗
j ). Therefore, by lemma 1.2 and proposition 2.1,

we have

Af s∼
∑

j

⊕
[
Jrj

(λj , λ
∗
j ) 0

0 Jrj
(−λj ,−λ∗

j )

]
⊕

∑
k

⊕
[
Jrk

(λk) 0
0 Jrk

(−λk)

]
(3.1)

s∼
∑

j

⊕
[
Jrj

(λj , λ
∗
j ) 0

0 −Jrj
(λj , λ

∗
j )

]
⊕

∑
k

⊕
[
Jrk

(λk) 0
0 −Jrk

(λk)

]
(3.2)

ps∼
[∑

j ⊕ Jrj
(λj , λ

∗
j ) ⊕ ∑

k ⊕ Jrk
(λk) 0

0 −∑
j ⊕ Jrj

(λj , λ
∗
j ) ⊕ ∑

k ⊕ Jrk
(λk)

]
(3.3)

=

∑

j

⊕ Jrj
(λj , λ

∗
j ) ⊕

∑
k

⊕ Jrk
(λk)




f

, (3.4)

where λj = aj + ibj (aj � 0, bj > 0) are imaginary eigenvalues and λk(�0) are real
eigenvalues of the real representation Af , Jrj

(λj , λ
∗
j ) and Jrk

(λk) are the forms of the real
matrices given in (1.3) and (1.4).

From lemma 1.2 and the above statement, we get the following result.

Proposition 3.1. Let A ∈ Cn×n. Then there exists a nonsingular real matrix T ∈ Rn×n such
that

T −1Af T =

∑

j

⊕ Jrj
(λj , λ

∗
j ) ⊕

∑
k

⊕ Jrk
(λk)




f

, (3.5)

where λj = aj + ibj (aj � 0, bj > 0) are imaginary eigenvalues and λk(�0) are real
eigenvalues of the real representation Af , and Jrj

(λj , λ
∗
j ) and Jrk

(λk) are the forms of the
real matrices given in (1.3) and (1.4).

Let A,B ∈ Cn×n be two complex matrices. If A is consimilar to B, then there exists
a nonsingular complex matrix S such that AS∗ = SB, by (2.2) Af Sf Pn = Sf PnB

f . This
means that if A is consimilar to B, then Af is similar to Bf .
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Conversely, if Af is similar to Bf , then Af and Bf have the same eigenvalues; by (3.2)
and [8, chapter 6.7] there exists a real and full-rank matrix Xj such that Af Xj = XjJr(λj , λ

∗
j ).

Then by QnA
f Qn = Af in (2.3), we have

Af Xj = XjJrj
(λj , λ

∗
j ), Af (QnX) = −(QnX)Jrj

(λj , λ
∗
j ), (3.6)

and (3.6) is equivalent to

Af (Xj ,QnXj ) = (Xj ,QnXj )

[
Jrj

(λj , λ
∗
j ) 0

0 −Jrj
(λj , λ

∗
j )

]
. (3.7)

In a similar manner, there exists a real and full-rank matrix Yk such that

Af (Yk,QnYk) = (Yk,QnYk)

[
Jrk

(λk) 0
0 −Jrk

(λk)

]
. (3.8)

Combining (3.2)–(3.8) there exists a nonsingular real matrix T = (Z,QnZ) ∈ R2n×2n,

Z ∈ R2n×n such that

Af T = T J f , J =
∑

j

⊕ Jrj
(λj , λ

∗
j ) ⊕

∑
k

⊕ Jrk
(λk). (3.9)

Let Z = [
Z1
Z2

]
, Z1, Z2 ∈ Rn×n and S = Z1 + Z2i. Then, T = Sf Pn. From the nonsingular

matrix T, we get S which is a nonsingular matrix, and (3.9) is equivalent to

Af Sf Pn = Sf PnJ
f ⇔ (AS∗)f = (SJ )f ⇔ AS∗ = SJ. (3.10)

This means that A is consimilar to J . Similarly, B is consimilar to J . Therefore, A is
consimilar to B.

The above statement implies the following result.

Theorem 3.2. Let A,B ∈ Cn×n. Then A is consimilar to B if and only if Af is similar to Bf ,
i.e. A

cs∼ B if and only if Af s∼ Bf .

Clearly for any A ∈ Cn×n, Af is similar to (Af )T , and it is clear by (2.3) and (2.4) that

Af s∼ (A∗)f , Af s∼ (AT )f , Af s∼ (AH )f .

Combining the above statement and theorem 3.2, we have the following result.

Corollary 3.3. Let A ∈ Cn×n. Then A
cs∼ A∗, A

cs∼ AT and
cs∼ AH .

Theorem 3.2 gives an algebraic relation between consimilarity and similarity of complex
matrices by means of a real representation, sets up a bridge between consimilarity and similarity
and turns the theory of consimilarity into that of similarity by means of a real representation
of a complex matrix.

4. Applications

By proposition 3.1 and theorem 3.2, we get a real concanonical form of a complex matrix
under consimilarity.

Theorem 4.1. Every n × n complex matrix A is consimilar to a real concanonical form, and
the real concanonical form is unique up to permutation of the diagonal canonical blocks.
Specifically, there exists a nonsingular n × n complex matrix S, such that

S−1AS∗ =
∑

j

⊕ Jrj
(λj , λ

∗
j ) ⊕

∑
k

⊕ Jrk
(λk), (4.1)
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where

Jrj
(λj , λ

∗
j ) =




Fj I2

Fj

. . .

. . . I2

Fj


 , Fj =

[
aj bj

−bj aj

]
, (4.2)

where λj = aj + ibj (aj � 0, bj > 0), λk � 0 are the eigenvalues of Af and Jrk
(λk) are the

Jordan blocks of λk � 0.

The following result immediately comes from theorem 4.1

Corollary 4.2. Every n × n complex matrix is consimilar to an n × n real matrix.

Combining lemma 1.1, theorems 3.2 and 4.1, we get the following result.

Corollary 4.3. Let A,B ∈ Cn×n. Then the following statements are equivalent:

(1) A and B are consimilar;
(2) the real representation of A and B is similar;
(3) AA∗ and BB∗ are similar and A,B satisfy the alternating-product rank condition, i.e.

rank
∏k

(AA∗) = rank
∏k

(BB∗), k = 1, 2, . . . , n and
(4) A and B have the same concanonical form.

5. Example

This section, by means of a real representation of a complex matrix, gives possible methods
for finding a nonsingular complex matrix S with S−1AS∗ = J .

First of all, by proposition 3.1 if there exists a nonsingular real matrix T such that
Af T = T J f and by (2.3) we have QnA

f Qn = Af and QnJ
f Qn = J f , then

Af T = T J f ⇔ Af (QnT Qn) = (QnT Qn)J
f . (5.1)

Let

T̂1 = 1
2 (T − QnT Qn), T̂2 = 1

2 (T + QnT Qn). (5.2)

Then

Af T̂l = T̂lJ
f , l = 1, 2. (5.3)

Let

T =
[
T11 T12

T21 T22

]
, (5.4)

where Tkl ∈ Rn×n. It is easy to get by direct calculation

T̂1 =
[
T̂11 −T̂12

T̂12 T̂11

]
, T̂2 =

[
T̂21 T̂22

T̂22 −T̂21

]
, (5.5)

where

T̂11 = 1
2 (T11 + T22), T̂12 = 1

2 (T21 − T12), (5.6)

T̂21 = 1
2 (T11 − T22), T̂22 = 1

2 (T21 + T12). (5.7)
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From (5.5), we construct two complex matrices

S1 = T̂11 + T̂12i = 1

2
(In, iIn)T̂1

[
In

−iIn

]
= 1

4
(In, iIn)(T − QnT Qn)

[
In

−iIn

]
, (5.8)

S2 = T̂21 + T̂22i = 1

2
(In, iIn)T̂2

[
In

iIn

]
= 1

4
(In, iIn)(T + QnT Qn)

[
In

iIn

]
. (5.9)

Clearly, S
f

1 Pn = T̂1 and S
f

2 = T̂2. Then by (2.2), equation (5.3) is equivalent to

Af S
f

1 Pn = S
f

1 PnJ
f ⇔ (AS∗

1 )f = (S1J )f ⇔ AS∗
1 = S1J, (5.10)

and

Af S
f

2 Pn = S2J
f Pn ⇔ (AS∗

2 )f = (S2J
∗)f = (S2J )f ⇔ AS∗

2 = S2J. (5.11)

If either of S1 and S2 is nonsingular, then we find a nonsingular complex matrix S with
S−1AS∗ = J . Therefore, the above statement provides two possible methods for finding a
nonsingular complex matrix S with S−1AS∗ = J .

Example. Let A be a complex matrix

A =

 i 1 + i 1 − i

−2 + i 0 1 + 2i
−1 −i 1 + i


 .

Find the real concanonical form J and a nonsingular complex matrix S such that S−1AS∗ = J .
Solution. It is easy by (2.1) that the real representation Af of the complex matrix A is

Af =




0 1 1 1 1 −1
−2 0 1 1 0 2
−1 0 1 0 −1 1
1 1 −1 0 −1 −1
1 0 2 2 0 −1
0 −1 1 1 0 −1




and the eigenvalues of Af are λ1 = 1 + 2i, λ2 = 1 − 2i = λ∗
1, λ3 = −1 − 2i = −λ1, λ4 =

−1 + 2i = −λ∗
1, λ5 = 1 and λ6 = −1 = −λ5. From (1.3), let

J1(λ1, λ
∗
1) =

[
1 2

−2 1

]
, J1(λ5) = (1).

By direct calculation, we can find a real nonsingular matrix T (3.5) such that

T −1Af T = (J1(λ1, λ
∗
1) ⊕ J1(λ5))

f = J f =

 1 2 0

−2 1 0
0 0 1




f

,

where

T =




1 0 0 0 0 1
0 1 0 −1 0 0
0 1 1 0 0 0
0 0 −1 1 0 0
1 0 0 0 1 0
0 0 0 0 1 1




.
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Finally, from (5.8) we let

S = 1

4
(I3, iI3)(T − Q3T Q3)

[
I3

−iI3

]
=


1 0 −i

i 1 0
0 1 1


 ,

and clearly S is a nonsingular complex matrix, so by theorems 3.2 and 4.1, the real matrix J

is the concanonical form of the complex matrix A under consimilarity and S is a nonsingular
complex matrix such that

S−1AS∗ = J =

 1 2 0

−2 1 0
0 0 1


 .

Acknowledgments

This paper is supported by the National Natural Science Foundation of China and Shandong
Natural Science Foundation of China (Y2005A12).

References

[1] Sakurai J J 1985 Modern Quantum Mechanics (Menlo Park, CA: Benjamin-Cummings)
[2] Weinberg S 1995 The Quantum Theory of Fields vol 1 (Cambridge: Cambridge University Press)
[3] Kurucz Z, Koniorczyk M Adam P and Janszky J 2003 An operator description of entanglement matching in

quantum teleportation J. Opt. B: Quantum Semiclass. Opt. 5 627–32
[4] Levine I N 1991 Quantum Chemistry 4th edn (Englewood Cliffs, NJ: Prentice-Hall)
[5] Horn R A and Johnson C R 1985 Matrix Analysis (New York: Cambridge University Press)
[6] Hong Y P 1985 Consimilarity: theory and applications Doctoral dissertation Johns Hopkins University
[7] Hong Y P and Horn R A 1988 A canonical form for matrices under consimilarity Linear Algebra Appl. 102 143–68
[8] Lancaster P and Tismenetsky M 1985 The Theory of Matrices with Applications 2nd edn (New York: Academic)
[9] Jiang T and Wei M 2003 On solutions of the matrix equations X − AXB = C and X − AXB = C Linear

Algebra Appl. 367 225–33

http://dx.doi.org/10.1088/1464-4266/5/6/013
http://dx.doi.org/10.1016/0024-3795(88)90324-2
http://dx.doi.org/10.1016/S0024-3795(02)00633-X

	1. Introduction
	2. Real representation
	3. An algebraic relation between consimilarity and similarity
	4. Applications
	5. Example
	Acknowledgments
	References

